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Influence of mass polydispersity on dynamics of simple liquids and colloids
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We conduct molecular-dynamics computer simulations of a system of Lennard-Jones patrticles, polydisperse
in both size and mass, at a fixed density and temperature. We test for and quantify systematic changes in
dynamical properties that result from polydispersity, by measuring the pair-distribution function, diffusion
coefficient, velocity autocorrelation function, and non-Gaussian parameter, as a function of the degree of
polydispersity. Our results elucidate the interpretation of experimental studies of collective particle motion in
colloids, and we discuss the implications of polydispersity for observations of dynamical heterogeneity, in both
simulations of simple liquids and colloid experiments.
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[. INTRODUCTION this is a good approximation. However, dynamical proper-
ties, especially at the microscopic level, may depend sensi-
The dynamical behavior of liquids is an area of intensetively on the nature of microscopic structural fluctuations,
current interest. Much of this interest has been motivated band so may be affected by even small polydispersities. In
the desire to understand the progressively slower and mormddition, size polydispersity in real colloids leads inevitably
complex dynamics of dense, supercooled liquids as they ar® a polydispersity of mass. However, some models of poly-
cooled toward the glass transitigd]. In the last few de- disperse liquids and colloids consist of systems in which
cades, numerous direct insights on dynamical motion in ligparticle size varies, but not particle mg3s9|.

uids have been obtained using molecular-dynanid®) In this paper, we seek to isolate and quantify the role of
computer simulations, in which the spatial coordinates ofsize and mass polydispersity on the dynamics of a simple
particles as a function of time are calculafgd. More re-  liquid system, in particular, to assess the need to incorporate

cently, experimental studies of colloids have used confocalnass polydispersity when simulating the dynamics of realis-
microscopy to track individual particld8—6], thus generat- tic systems having size polydispersity. To do so, we conduct
ing the same type of data on microscopic particle motions abD simulations of a system of particles interacting via the
is obtained from simulations. For studying the glass transitennard-JonegLJ) potential, polydisperse with respect to
tion, simulations and colloid experiments therefore serve aboth mass and size, as a functioncofOur results show that
important model systems in which the implications of theorya range of dynamical properti¢the diffusion coefficient, the
may be directly tested. velocity autocorrelation function, and the non-Gaussian pa-
In both simulations and colloid experiments, fluids haverametey of a polydisperse fluid are systematically shifted
been studied in which the particle size is polydisperse. Irfrom the corresponding monodisperse case. We discuss the
simulations, size polydispersity is often introduced to pre-implications of these results for observations of “dynamical
vent crystallization of the deeply supercooled liq(sge e.g. heterogeneity” in simulation$9,10] and in colloid experi-
[7]). In colloid experiments, some degree of polydispersity isments[5,6].
always present, and depends on the process by which colloid
particles are produced. To characterize the polydispersity of
colloids, the distributionf(o) of particle diameterss is
commonly found(or assumepto be Gaussian Since our aim is to study generic effects of polydispersity
on liguid dynamics, we chose the well-studied LJ potential to
1 1{o—0g\? model interparticle interactions. The LJ potential is popular
Oc(o)= —ex;{ - 5( 5 ) , (1) for simulations of simple liquids, and there exist many stud-
s\2m ies with which to compare our results.

In simulations of colloids, the colloidal particles are often
where oy is the average particle diameter, adiccharacter- modeled as hard spheres, and for many cases, this is a good
izes the width of the distributiof8]. Polydispersity may then approximation. However, interactions among colloidal par-
be quantified by the value of the dimensionless paraneeter ticles may take other forms, and may be explicitly controlled,
=6l 0. for example, by attaching soluble polymer chains by one end

In most experimental studies of colloidsee, e.9.[8]) a  to the particle surface to generate repulsion, or by adding
system is regarded as effectively monodisperse<if0.05.  nonadsorbing soluble polymers to the suspension to produce
For many properties, such as the average liquid structurettraction[11]. Though the present paper is motivated by the

recent experiments studying the dynamics of colloidal par-
ticles, we do not address the question of how the behavior of
*Electronic address: nkiriusc@uwo.ca a colloidal system depends on the shape of the interparticle
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interaction potential. We also do not take into account the 3
influence of a solvent.
We perform equilibrium molecular-dynamics simulations
in three dimensions of a system Nf=4000 particles inter-
acting via the shifted-force LJ potential, a modification of the

standard LJ potential, 2t
v 4 ﬂ 12_ ﬂ 6 ) -
ij(ry=4e ; rl 2 5

Here,V;; is the potential of interaction of two particlesnd 1L

j, separated by a distancee characterizes the strength of
the pair interaction and is constant for all particle pairs. In
the shifted-force LJ interaction, the LJ potential and force are
modified so as to go to zero continuouslyrat 2.50, and

interactions beyond 2dg, are ignored 2]. 0
Polydispersity is introduced through the particle size: 0
gij=(oi+0;)/2 whereo; (o}) characterizes the diameter of r
a particlei (j). Particles are assigned values by random FIG. 1. Effect of polydispersitg on the average liquid structure

sampling from the Gaussian distribution in E@). We also  as measured bg(r).
impose a mass polydispersity appropriate for the given size

polydispersity. The mass of a partidlés m;=mg(o; /o),
wherem, is the mass of a particle of sizg,. Particle trajec-
tories are evaluated using the leap-frog Verlet algorifBl - eases from zero to 0.1.

using the appropriate value af; in the equation of motion Figure 3 shows the dependencemaf the velocity auto-

of each particle. lation f . 1
Throughout this paper, we use reduced units. Energy j§oreranon unction(t) [13]

expressed in units of, length in units ofoy, the number

density of particleg in units of o, %, and temperatur@ in )= (v(0)-v(t))
units of e/k, wherek is Boltzmann’s constant. Time is (v|?)
expressed in units Of/moaozls. In these units, the time step

used for integrating the particle equations of motion is 0.01. . . . . .
After equilibration, all quantities are evaluated in the mi- Wwherev(t) is the velocity of a particle at ime D is related

crocanonical ensemble. We present datager0.75 andT to the inte_gral o#j(t), and consistent with_the decr_easeD)f
=0.66, a state not far from the triple point of the monodis—f[he neg_atwe pa_rt op(t) becomes Iarger n magmtude with
perse ’LJ fluid p=0.85, T=0.76) [12,13. We chose this ncreasingc. This trend reflects an increase withof the

state point so as to avoid the dense, deeply supercooled "g:t‘rength with which single-particle dynamical properties of

uid region of the phase diagram of the monodisperse LJ sys- ?Iisiysr:etir:]z are retained on a time scale comparable to the
tem, where spontaneous crystallization could interfere with0"1S10 e
the evaluation of equilibrium properties. We conduct sepa-

rate simulations foc=0, 0.05, and 0.1.

Figure 2 shows the dependence®fon c. We find that at
fixed p andT, D decreases systematically by about 10% as

: 4

1.00
IIl. PAIR-DISTRIBUTION FUNCTION, DIFFUSION
COEFFICIENT, AND VELOCITY AUTOCORRELATION 0.98
FUNCTION

The pair-distribution functiorg(r) that characterizes the
average liquid structurgl4] is shown in Fig. 1 for eacle o
studied. The effect of increasing polydispersity is to reduce®
the height of, and broaden the peaks associated with the suc  0.94
cessive neighbor shells around each particle. However, the
mean position of each neighbor shell does not change notice
ably. 0.92

We test for a dependence arof the bulk transport prop-
erties by evaluating the diffusion coefficieldt We obtainD

0.96

0.90

from (r?(t)) using the Einstein relation, 0 0.02 0.04 0.06 0.08 0.1
c
_(r¥(m) . L _ _
D=Ilim———. 3 FIG. 2. Fractional deviation with of D relative toD,, its value
te Of for a perfectly monodisperse system.
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FIG. 3. Effect of polydispersitg on the velocity autocorrelation
function ¥(t).

FIG. 4. Variation ofa,(t) with c.
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IV. NON-GAUSSIAN PARAMETER

Gs(r,t)=( (©)

The general non-Gaussian parametg(t) is defined for

integersn=1 as[13
g [13] where B=1KkT. In this case, it is readily shown that

(r2(1)) (r2"(t))=cp(r?(t))" and soa,(t)=0. For systems in which
ay(t)= — L (5) correlations of particle motions are promine@t(r,t) is not
Cn(r(t))" Gaussian, and the deviation of,(t) from zero serves to

. quantify the deviation of54(r,t) from the Gaussian form.
wherec,=[1-3-5---(2n+1)]/3". (r?"(t)) is the ensemble In the present paper we present resultsdfgft), the most
average of the @th power of the particle displacements after commonly calculated non-Gaussian parameter
a timet [15],

3(ri(t))

5(r2(1)? 10

ay(t)=

1 N
<r2"(t>>:<N§l ri(®=ri(O)*"). ©

In Fig. 4, we plota,(t) for three different values of polydis-

Here,r;(t) denotes the position of particieafter a timet
following a reference timé=0 in equilibrium.N is the total
number of particles in the system.

persityc=0, 0.05, and 0.1. Qualitatively, there are two ef-
fects induced by increasing polydispersiti): the character-
istic, intermediate-time peak af,, at approximatelyt=1,

The functions(r?"(t)) also represent the even momentsincreases in magnitude asincreases; andji) the value of
of G4(r,t), the self part of the van Hove correlation function «,(t) does not start from zero in the limit-0 whenc#0.
[14]. For an isotropic fluid made up of particles with spheri- We clarify each of these effects in turn below.
cally symmetric interactions, we can restrict our attention to  To distinguish the influence of mass and size polydisper-
G,(r,t), the probability density that a particle located at thesity separately, we conduct two simulations, offsize
origin at timet=0 will be found withindr of a distance at  only”) for a system in which the size polydispersity ds
time t [16] =0.1, but in which all the particle masses are set equal to
myp; and anothef*mass only”) for which the mass polydis-
persity is taken from our previous “mass and size*0.1
case, but with all the particle sizes then set equaljoWe
compare in Fig. 5, the resulting behavior®f as a function
of t with the behavior found for the monodisperse 0 case;
and with the case where both size and mass are polydisperse
with ¢=0.1.

First we focus on the behavior observed near the maxi-
mum of a,(t) at approximatelyt=1. Although the mass-
only curve in Fig. 5 lies above that of the monodisperse

In the case of an ideal gas of noninteracting particles havsystem, it still lies well below that corresponding to polydis-
ing a Maxwell-Boltzmann velocity distributiofl4], G4(r,t) persity of both mass and size. Hence, mass polydispersity is
is a Gaussian function of not solely responsible for the increase of the maximum .of

(@)

Z| -

N
Gs(f.t)=< Zl 5(r—|fi(t)—ri(0)|)>-

In terms of Gg(r,t), (r?"(t)) may be written

<r2“(t)>=4wfwr2”GS(r,t)r2dr. (8)
0
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0.2 . a system oN particles in which there arél speciegqlabeled
—-— ©=0.1 (mass only) by indexj) each havingN; particles of massn;. The mo-
— zjg-: g;es:'l'iglze) 7T ments(r2"(t)) may be found using a modified form of Eq.
015 Ll— c=0 ‘ A (6) appropriate for ariM-component system:
1 M Nj
)=l 2 = |ri<t>—ri<0>|2“>. (10
e j=1i=1
5‘\‘ 0.1 r "R
Equation(11) may be rewritten as
M
0.05 | ()= 2, 1i(r*"();, (12
wheref;=N;/N is the fraction of particles of speci¢sand
%07 107 10° 10’ 1N
t (r2h0)={ - 2 In-r©@f*), a3
j i<

FIG. 5. a,(t) for several types of polydispersity, demonstrating
that polydispersity of both particle size and mass has a greater imwhere the sum is over particles only of spedie&or each
pact, compared to the monodisperse case, than either size-only gpecies, the atomic motion &s-0 is also described by Eq.
mass-only polydispersity. (9) with the appropriate value an=m;, and hence, the
moments(r?(t)); and(r*(t)); may be found in the limit

with c. Interestingly, the size-only curve is also well below _, ¢ py substituting Eq(9) into Eq.(8) for eachj. The result
that corresponding to polydispersity of both mass and sizgg

Even the sum of the deviations from the monodisperse case
of the mass-only and size-only curves, is insufficient to ac- ) 3t?
count for the height of the curve for the system with poly- (r (t)>j:m (14
dispersity of both mass and size. That is, polydispersity of )
both mass and size together has a greater impact on dynamnjng
cal properties at intermediate times than can be obtained
from polydispersity of mass or size alone. 5t4

Next, we turn our attention to the behavior af ast <r4(t)>j:
—0. (For the remainder of this paper, we will denote the
limit as t—0 of @, as a3.) In MD simulations of a one-
component LJ systerfil5,17] and of a binary LJ mixture
[7,10], a5=0. However, in the binary LJ mixture studied,

. (15
2mj2

The value ofa; for the multicomponent system may then
be found by using Eqg12), (14), and(15) in Eq. (10),

the two species differ in size only and have the same mass, in M
contrast to our system in which the masses of particles differ > mo2,
in accordance with the polydispersity of their sizes. Two of . =
the curves in Fig. 5¢=0 and “size only”) correspond to AT ™ 2 -1 (16)
systems with no mass polydispersity, and in both casgs ( . mj‘lfj>
=

=0. For the other two curvex&0.1 and “mass only), a5
adopts the same nonzero value. It is clear that the mass pol
dispersity is solely responsible for the behavioragt

As t—0, the atomic motions in the fluid correspond to
those of free particles, and the distribution of velocities is thet-

, . . . ; io

Gaussian function given in E¢9). For a monodisperse sys-
tem, this means that;=0. For a system with polydisperse

¥nis expression highlights that, may not equal zero for a
system with polydisperse masses.

If the polydispersity is expressed as a continuous distribu-
n of massesp(m), Eq. (16) generalizes to

masses, each particle of a given mass also samples the f m~2p(m)dm

Gaussian velocity distribution given in E(). However, the ay= 0 s—1 (17)
Gaussian distributions sampled will have different widths for ( J'wml¢(m)dm)

particles of differentm. Consequently, the form of the total 0

Gq(r,t) function is not in general Gaussian because it is a

superposition of individual Gaussians of different width. The  Experimental studies of colloids typically characterize

result is a nonzero value af;, as found in our simulations. polydispersity not in terms of the masses, but in terms of the
Since the limitt— 0 corresponds to the free-particle limit particle diameters, described (o). Assuming that the

for atomic motion, we may calculate the non-Gaussian paparticle massm is proportional too>, and that¢(m) dm

rameter for a polydisperse systemtasO exactly. Consider = 6(o)do, Eq.(17) becomes

011402-4
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' V. DISCUSSION

When a, has been extracted via confocal microscopy in

0
10 colloid experiments, values as high a$~1.5 have been
observed5,4,3. In these studies, the polydispersity ranged
107 L i from c=0.01 to 0.1. Kaspeet al.[3] observed thats is not
zero for all values of the volume fraction occupied by the
ey colloidal particles. Marcust al.[4] found thatw; is nonzero
102 L _ and increases with increasing volume fraction. Weekal.

[5] found that ofa is approximately constant for small-
volume fractions but grows for higher-volume fractions. In
10 E general,a, was found to increase with the volume fraction
occupied by the colloid patrticles, in contrast to the absence
of any density dependence in E{.8). In the case of real
= e colloids, the behavior otx, ast—0 is complicated by the
c fact that solvent-induced hydrodynamic forces among par-
ticles potentially introduce strong, short-time-scale correla-
_ FIG. 6. Log-log plot ofa;, as a function ofc for a Gaussian  ions of particle velocities, invalidating the free-particle as-
distribution of particle diameters. sumption that is the basis of E¢). The large difference

between the behavior af;, found for these systems, and that

4

10

10

fwgfag( o)do predicted by Eq(18) demonstrates that polydispersity alone

) 0 cannot account for the observed valuesagf and that hy-

Qo= T ;L (18) drodynamic effects indeed dominate the short-time dynami-
(f Ugﬁ(o)do) cal behavior of real colloids.

At intermediate times, we find that the peak value of
i a, increases withc. The maximum value otr, has been

Note that the value ofr, therefore depends only on the gpown[10] to correlate to the degree of dynamical heteroge-
shape of the mass distribution function, and is otherwise COMsgity present in the system: that is, transient, spatially corre-
stant for all choices op, T and interparticle interaction. . lated groups of particles whose characteristic structural re-

dis\tlxﬁu?izﬁ%ftzgrﬁggvciarrizltjétrstogit/r:aen (i:r?fz‘(aq_)c’fv\t/gesizl:fs'a xation time differs_ from the mean. Our rgsults therefore
_ ith oo=1 in Eq. (18) and calcuiatea° s a suggest that dynamical heterogeneity, prominently observed

;aaect?onggf c\:Né::igU%) Wle evgiuate the integrals ianQLS) at lowerT and higherp than studied here, may be enhanced
o as polydispersity increases. One source of this enhancement

numerically, replacing the limits of integration ¢, with : ) .
[0.010,20]. This avoids the divergence of the integrandsmaly be the influence of mass polydispersity on spontane-
L0 ously occurring density fluctuations, that in turn control the

at =0, and in any case is more physical, since a real dis-

tribution of particle sizes would have a nonzero lower bound’development of dynamical heterogeneities. In general, the

and a finite upper bound. As seen in Figa@occz for small  occurrence and quantification of dynamical heterogeneity in

¢, but increases more rapidly than this im;O.l The pre- a pondisperse system is Iikgly to be more complicated than

dictions of Eq.(18) are in agreement with our simulation Ina mo_nod|sperséor even b|d|sp(_ars)esystem. At the same

results. Forc=0.05, Eq.(18) gives a,=0.023 44, while our jume, since we o.bserV(.a a slowing of t.he dynamics WIFh

simulation gives a;=0.027; for c=0.1 we obtain o increasing polydispersity, the dynamical heterogeneity

—0.10781 and 0 1i3 respéctively 2 may be more prominent and longer lived in a polydisperse
We may also use Iéq18) to calculatea for a system in system, and so may facilitate the study of these complex

2 structures.

which the distribution of sizes is not Gaussian. For example; | h Ilustrated that ¢ ¢ varticl
Sear[18] simulated a system of hard spheres, polydisperse in n summary, we have llustrated that a system ot particies

both size and mass, using a “hat” function of width: with polydispersity of both mass and size is a more realistic
0(0)=(Wog) "L for ao(l-wi2)<o<oy(l+w/2), and model(compared to models without mass polydispejsity
6(o) =0 otherwise, andn~ o>. For this case, we are able to studying the dynamics of colloids in MD simulations. Our

solve Eq.(18) exactly, giving results show that typical polydispersities found in real sys-
tems may induce an influence of the order of 10% on dy-

(1+ 0/2)5— (1— wl2)5 namical properties. This is_ a small effect for st_udie;, such as

a,= — (19 those near a glass transition, where relaxation times may

S5w(1- w?/4) vary by several orders of magnitude. At the same time,

knowledge of the amount and direction of the impact of
For @=0.3, Eq. (19 gives a,=0.06916, while forw polydispersity on dynamics is required because polydisper-
=0.7, @,=0.4222, in agreement with the simulation resultssity is so commonly found in systems studied both in simu-
in Fig. 6 of Ref.[18]. lations and experiments. This knowledge is also crucial for
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precise tests of theories, particularly those formulated forcolloidal systems where the polydispersity is progressively
perfectly monodisperse systems. We also note that our resuligcreased.

may be tested experimentally in colloids by deliberately

varying the polydispersity of the studied colloidal system. ACKNOWLEDGMENTS
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